Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(3): e0012022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484041

RESUMO

Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Aedes/genética , Aedes/microbiologia , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Wolbachia/genética , Fiji/epidemiologia , Vanuatu
2.
PLoS Negl Trop Dis ; 17(11): e0011642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032856

RESUMO

BACKGROUND: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and has been shown to reduce the transmission of dengue and other Aedes-borne viruses. Here we report the entomological results from phased, large-scale releases of Wolbachia infected Ae. aegypti mosquitoes throughout three contiguous cities located in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS: Local wMel Wolbachia-infected Ae. aegypti mosquitoes were generated and then released in an initial release pilot area in 2015-2016, which resulted in the establishment of Wolbachia in the local mosquito populations. Subsequent large-scale releases, mainly involving vehicle-based releases of adult mosquitoes along publicly accessible roads and streets, were undertaken across 29 comunas throughout Bello, Medellín and Itagüí Colombia between 2017-2022. In 9 comunas these were supplemented by egg releases that were undertaken by staff or community members. By the most recent monitoring, Wolbachia was found to be stable and established at consistent levels in local mosquito populations (>60% prevalence) in the majority (67%) of areas. CONCLUSION: These results, from the largest contiguous releases of wMel Wolbachia mosquitoes to date, highlight the operational feasibility of implementing the method in large urban settings. Based on results from previous studies, we expect that Wolbachia establishment will be sustained long term. Ongoing monitoring will confirm Wolbachia persistence in local mosquito populations and track its establishment in the remaining areas.


Assuntos
Aedes , Wolbachia , Animais , Humanos , Cidades , Colômbia , Meio Ambiente , Mosquitos Vetores
3.
PLoS Negl Trop Dis ; 15(7): e0009556, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252106

RESUMO

BACKGROUND: The introduction of the bacterium Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Evidence of a reduction in dengue case incidence following field releases of wMel-infected Ae. aegypti has been reported previously from a cluster randomised controlled trial in Indonesia, and quasi-experimental studies in Indonesia and northern Australia. METHODOLOGY/PRINCIPAL FINDINGS: Following pilot releases in 2015-2016 and a period of intensive community engagement, deployments of adult wMel-infected Ae. aegypti mosquitoes were conducted in Niterói, Brazil during 2017-2019. Deployments were phased across four release zones, with a total area of 83 km2 and a residential population of approximately 373,000. A quasi-experimental design was used to evaluate the effectiveness of wMel deployments in reducing dengue, chikungunya and Zika incidence. An untreated control zone was pre-defined, which was comparable to the intervention area in historical dengue trends. The wMel intervention effect was estimated by controlled interrupted time series analysis of monthly dengue, chikungunya and Zika case notifications to the public health surveillance system before, during and after releases, from release zones and the control zone. Three years after commencement of releases, wMel introgression into local Ae. aegypti populations was heterogeneous throughout Niterói, reaching a high prevalence (>80%) in the earliest release zone, and more moderate levels (prevalence 40-70%) elsewhere. Despite this spatial heterogeneity in entomological outcomes, the wMel intervention was associated with a 69% reduction in dengue incidence (95% confidence interval 54%, 79%), a 56% reduction in chikungunya incidence (95%CI 16%, 77%) and a 37% reduction in Zika incidence (95%CI 1%, 60%), in the aggregate release area compared with the pre-defined control area. This significant intervention effect on dengue was replicated across all four release zones, and in three of four zones for chikungunya, though not in individual release zones for Zika. CONCLUSIONS/SIGNIFICANCE: We demonstrate that wMel Wolbachia can be successfully introgressed into Ae. aegypti populations in a large and complex urban setting, and that a significant public health benefit from reduced incidence of Aedes-borne disease accrues even where the prevalence of wMel in local mosquito populations is moderate and spatially heterogeneous. These findings are consistent with the results of randomised and non-randomised field trials in Indonesia and northern Australia, and are supportive of the Wolbachia biocontrol method as a multivalent intervention against dengue, chikungunya and Zika.


Assuntos
Aedes/microbiologia , Aedes/virologia , Febre de Chikungunya/transmissão , Dengue/transmissão , Controle de Mosquitos/métodos , Wolbachia/fisiologia , Infecção por Zika virus/transmissão , Aedes/fisiologia , Animais , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/fisiologia , Feminino , Humanos , Incidência , Masculino , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Zika virus/fisiologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
4.
Gates Open Res ; 4: 109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33103066

RESUMO

One of the pillars of the World Health Organization's (WHO) Global Vector Control Response 2017-2030 strategy is the engagement of communities. Among the priority activities, defined by 2022 by the WHO, is the development of plans for the effective engagement and mobilisation of communities in vector control. Novel technologies for arboviruses control are being developed, such as the Wolbachia method, implemented by the World Mosquito Program (WMP). Here we discuss and analyse the framework for community engagement implemented by the WMP in Brazil, during the large-scale deployment of the method in the municipalities of Niterói and Rio de Janeiro, Brazil. Our experience indicates that the community engagement work for arboviruses control should be understood as an opportunity for local development. It is necessary, based on an integrated analysis of the territory, to understand that the actions for arboviruses control could be a catalyst for the necessary socioenvironmental, cultural and public health changes. Furthermore, it is essential to understand that community engagement goes beyond informing or asking for population consent, but it constitutes a possibility for dialogue and exchange between the various stakeholders present in the territories, to build on cooperation for mosquito-borne disease control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...